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Abstract

On January 5th, 2025, New York City will implement the first congestion pricing program in the

US. This document pre-registers an analysis of the effects of the law on pollution.

1 Introduction

New York City’s congestion pricing program is the first in the US. In this document, we pre-register an

analysis of the law’s effects on air pollution in the congestion pricing area and in surrounding areas

in New York and New Jersey. We use data from PurpleAir sensors, the Environmental Protection

Agency (EPA), and New York City.

We pre-register our analysis because:

1. This is a setting where analysis requires a large number of researcher decisions, including, for

example, whether to adjust for weather, how to treat missing data, and what time horizons to

use to summarize the effects. In particular, the needed data comes from multiple sources with

different quality and completeness; it may improve the reliability of estimates to set the inclusion

criteria beforehand.

2. The consequences are likely to be debated.
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3. Since there is only one treated unit, the best causal inference strategy ex ante might be similar

to the best strategy ex post. In other words, a study of the outcomes of the policy in 2026 might

make fairly similar choices in specifying the counterfactuals and estimating the causal effects.1

Together, these point to large benefits to pre-registration, in terms of reduced scope for potential “p-

hacking.” On the other side, the costs of pre-registration are likely to be relatively small, as the analytic

decisions we make before the policy goes into effect are likely similar to those we would make later.

We summarize our analytical choices in the pre-analysis checklist in Table 3. Our core results will

measure effects over two time horizons: the first three months and the first year of the policy. Our pri-

mary pollution outcome is daily average PM2.5 measured using government and PurpleAir sensors.

Our secondary outcomes are peak hour PM2.5 and daily carbon monoxide (CO) and nitrogen diox-

ide (NO2), measured from EPA sources. We measure pollution effects over several treated areas: the

Manhattan Central Business District (where the congestion fee applies, abbreviated CBD), Brooklyn,

the Bronx, New Jersey, Queens, Staten Island, and Manhattan north of the Central Business District.

To estimate treatment effects, we compare pollution in the treated areas to that in a “synthetic

control,” a weighted average of outcomes from sensors outside the New York area that is selected

to track outcomes in the treated area in the period leading up to the policy implementation. We

use the multisynth estimator of Ben-Michael et al. (2021b) and the augsynth estimator of Ben-

Michael et al. (2021a) to construct the synthetic controls. See those papers for discussions of the ad-

vantages of these estimators relative to the “vanilla” synthetic control estimator. We show below that

multisynth tends to give much more precise estimates, in placebo treatment effect analyses, than

does another alternative, the GSynth estimator of Xu (2017).

2 Pollution Build

Here we describe the different sources we use for measuring PM2.5 and our secondary pollution out-

comes, NO2 (measured in parts per billion) and CO (parts per million). From these different sources,

we make a date-by-sensor dataset giving daily average pollution and daily average pollution restrict-

ing to peak hours.2

1Future researchers may gain access to sensor data not currently made available to the public, however.
2Peak hours are 5 AM to 9 PM on weekdays and 9 AM to 9 PM on weekends. If these change during our treatment

period, we will update the average so that the daily hour range always tracks the peak hours that are in effect.
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In what follows, comparison states refers to: Pennsylvania, New Jersey, Connecticut, Maryland,

Rhode Island, Washington, DC, and Massachusetts when discussing our main outcome, PM2.5. For

CO and NO2, we draw all EPA AQS sensor data in the United States since coverage is much sparser.

To avoid spillovers, the comparison set always excludes sensors from any of our treated areas in New

York City and nearby New Jersey as well as any sensors within 20 miles of the New York Central

Business District.

Ultimately, we will have six builds:

1. Main build: daily average PM2.5 data, including PurpleAir sensors.

2. Main build excluding PurpleAir from treated areas (for robustness of the results from the build

above).

3. Peak hour build: daily PM2.5 averages including only peak hours (as a secondary analysis).

4. Peak hour build excluding PurpleAir from treated areas (for robustness of the results from the

build above).

5. Nitrogen dioxide build (as a secondary analysis): Daily average NO2 using EPA AQS data.

6. Carbon monoxide build (as a secondary analysis). Daily average CO using EPA AQS data.

Cleaning steps For all PM2.5 sources, hourly readings above 250 (0.03% of observations in Pur-

pleAir, for example) are set to 250. Daily PM2.5 averages are capped at 150. For NO2, any daily

average above 35 ppb is set to 35 (0.2% of observations in 2024 EPA AQS data) and hourly measure-

ments are capped at 50 ppb (0.05% of EPA AQS hourly observations). CO daily averages are capped

at 1 ppm and hourly measurements are capped at 2 ppm. Any hourly or daily reading below zero is

set to zero.3 We use a linear interpolation, discussed below, to fill in missing daily observations for

each sensor.

PurpleAir We will download hourly sensor readings from Purple Air sensors from New York and

the comparison states (PurpleAir, 2023). We use the CF3-ALT estimates of PM2.5 (Wallace and Ott,

2023). These sensors are low-cost and show some systematic biases compared to higher-quality EPA

3We specify the cleaning for both daily and hourly because our main analysis is of daily averages but we also perform a
secondary analysis looking at specific hours.

3



sensors (Barkjohn et al., 2021). We do not use the corrections from Barkjohn et al. (2021) since these

should be differenced out in our analysis, but we make several restrictions to improve data quality.

We drop sensors that have an r-squared less than 0.6 when we regress channel A readings on channel

B readings at the weekly level.4 Further, we restrict to sensors whose position rating is either 4 or

5 stars, indicating that the sensor is close to the reported latitude and longitude based on Google’s

Geolocation API. As a robustness check, we will perform the same analyses leaving out PurpleAir

sensors from the focal treated area.

New York City sensors The city posts some PM2.5 data from the New York City Community Air

Survey at the New York City Environment and Health data portal (NYC, 2024). This currently includes

11 sensors located in New York City and is provided hourly.5 We refer to these as the NYC Permanent

sensors below.

EPA Sources We will download data from the Environmental Protection Agency’s (EPA) Air Qual-

ity System (AQS) and AirNow service. The AirNow data is available almost instantly and contains

measures of CO, PM2.5, ozone, and PM10. The AQS data are released with roughly a six-month lag.

We will pull data from both sources and may use only AirNow for preliminary analyses. How-

ever, the final results will be estimated once the EPA data is available. Whenever there is overlap (i.e.,

AirNow and EPA each have enough observations for a specific sensor to be included) we default to

the EPA data because of its quality control processes. But if only AirNow data is available for a certain

sensor, we still keep it since the sensor coverage is limited in our small treated areas.6

4This is based on a recommendation from PurpleAir. See, e.g., Merrin and Francisco (2022) for a discussion of qual-
ity control techniques with the PurpleAir data. We estimate these sensor-level regressions using the time window being
employed since the quality of sensor ratings may change over time.

5In addition to this, New York City Department of Health and Mental Hygiene runs New York City Community Air
Survey (e.g., NYCDOH, 2022), which incorporates data from mobile sensors, but these are released with a long lag. The
data from 2023 will not be available until April 24, 2025. Moreover, our framework does not easily accommodate changing
sensor location. We will not use the NYCCAS data.

6The AirNow fields we use are “PM2.5-24HR” for daily data and “PM2.5” for hourly data. The EPA parameter codes we
use are (in order of preference) 88101, 88502, 88500, and 88501 (U.S. Environmental Protection Agency, 2006). In a recent such
pull for Connecticut, Massachusetts, New Jersey, New York, and Pennsylvania, 73% of sensor-dates had a measurement for
88101, the highest-quality PM2.5 measure. The remaining observations were evenly split between 88501 and 88502. For the
other pollutants, the parameter codes we use are 42101 for CO and 42602 for NO2.
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2.1 Interpolation

The sensors are frequently missing data. To interpolate missing values, we will perform the following

steps for each of the sensors, performed separately for post-treatment and pre-treatment periods:

• Estimate a regression predicting the pollution outcome with day of week dummies, month dum-

mies, a quadratic in date, a quadratic in precipitation, linear controls and decile dummies for the

minimum and maximum temperatures, and a holiday dummy.

• Calculate interpolated pollution outcome as the fitted value from the regression plus the simple

linear interpolation of the regression residuals from the complete-data points on either side of

the missing observation.

In other words, if we have data from July 17 and July 19, but not from July 18, we will interpolate

the value for July 18 as the predicted value for July 18 from the regression from the first step, plus the

simple average of the regression residuals for July 17 and July 19.7

2.2 Weather data

We will download daily weather station data from the Global Historical Climatology Network daily

(GHCNd) (Menne et al., 2012b,a). For each pollution sensor in our data, we assign to it the daily

weather data from its closest weather station (after dropping weather stations with too many missing

values). Missing data is less common compared to the pollution sensors. On average, 3-5% of daily

observations are missing in our demonstration build, with an average distance of 5 miles to the pol-

lution sensor. We use maximum daily temperature, minimum daily temperature, and precipitation

from the weather stations. We interpolate these with a simple linear regression,

yit = β0 +
12

∑
m=2

βmMonthm + δDatet + γDate2
t + αi + ε it, (1)

where yit is a weather outcome on day t at station i, β0 is a constant, Monthm gives month dummies,

δDatet + γDate2
t is a quadratic in the numeric date, and αi is a station fixed effect. As in the inter-

polation for the pollution sensors (Section 2.1), the imputed values are equal to the fitted value from

Equation 1 plus the simple linear interpolation of the residuals.
7If several consecutive days are missing, all will be interpolated, using weighted averages of the surrounding complete-

data residuals. Thus, if July 18 and July 19 are both missing, the July 18 interpolation will equal the predicted value for July
18 plus 2/3 of the July 17 residual and 1/3 of the July 20 residual.
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3 Treated areas

We will study impacts on pollution in the following areas:

Figure 1: Map of sensors

Notes: This shows a subset of sensors available for analysis as of December 2024 assuming a start date of March 2023 and
before dropping sensors that have too many missing values. The colors indicate treatment status. Red: Manhattan CBD,
Blue: Manhattan north of the CBD, Purple: Bronx, Green: Queens, Pink: Brooklyn, Black: New Jersey, Orange: Staten Island.

• The Manhattan Central Business District (CBD): This is where the congestion pricing fee applies.

• New Jersey within 20 miles of the center of the CBD8

• Manhattan north of the CBD

• Brooklyn County

• Bronx County

• Staten Island

• Queens

8The exact coordinates we use are (40°44’39.7"N 73°59’21.5"W).
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Our comparison set for all analyses consists of all observations not in any of the above areas and

at least 20 miles from the center of the CBD.

4 City permutation to choose analytical sample

We have two major build decisions to pin down. First, we need to choose a start date for the pre-

treatment period. How far back should the data go? (The end of the post-treatment period is fixed at

April 5, 2025 and January 5, 2026 for our three-month and 12-month analyses, respectively.) Second,

we need to set a threshold for how much interpolation we are willing to do for a sensor with a great

deal of missing data. Our sources for both pollution and weather often have periods with missing

data, especially the NYC sensors.

This presents a tradeoff: a longer pre-treatment period will likely lead to a better synthetic control

fit and more precision. However, since many NYC Permanent and EPA sensors have outages, and

the PurpleAir network has been growing rapidly over the past few years, we will lose sensors to our

missing data criterion as we move the start date back in time.

In order to choose these two parameters to maximize precision, we will conduct a series of placebo

tests using other geographies in our comparison states. The placebo tests measure “treatment effects”

over the same time horizons in other places that have not implemented congestion pricing. The av-

erage estimate for these cities should be close to zero, so we judge the quality of the parameter set by

how close its average estimate is to zero.

For the PM2.5 analysis, we select the 20 largest geographies that have at least one EPA/AirNow

sensor and at least three PurpleAir sensors under the following loose parameters: up to 50% missing

days with a January 1, 2024 start date. We exclude data from New York City and its surrounding

areas. We will first consider cities, ranking them by 2020 Census population. If we exhaust eligible

cities before reaching 20 units, we will continue the selection process using counties, excluding any

counties that contain previously selected cities.

Next, we will estimate synthetic control models treating that geography as if it implemented con-

gestion pricing on January 5, 2025, always omitting our actual treated areas plus any sensor within

20 miles of the Manhattan CBD from the analysis. We will estimate these placebo models across a

grid of potential start dates for the pre-treatment period and various thresholds for allowable missing

observations, potentially allowing different thresholds in the pre- and post-treatment periods.
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The full list of parameters is

• Missing percent: {10, 20, 30, 40, 50}

• Start date of pre-treatment period: {January 5, 2022 up to July 5, 2024, incremented by 3 months}

For example, for one set of placebo analyses, we will start the pre-treatment period on January 5,

2022 and sensors and weather stations will be dropped if they are missing over 10% of days in either

the period from January 5, 2022 to January 5, 2025 or the period from January 6, 2025 to January 6,

2026. For some parameter sets, sensors will drop out. We necessarily exclude geographies with zero

sensors, and skip a parameter set if this leaves us with fewer than 15 geographies.

For each combination of parameters, we will compute the placebo treatment effect for each placebo

treatment city, averaged across all sensors in that city and across all observations. We will then com-

pute the mean squared placebo treatment effect, giving each city equal weight. For our final analysis,

we will then select the start date and missing data threshold combination that minimizes this mean

squared placebo treatment effect. This process is run separately for each of the outcomes and time

horizons.

It’s possible that the parameter set that is optimal with this criteria will yield a sample with zero

treated sensors in one or more of the treated areas (e.g., Staten Island) in a particular build. If this

occurs, we will select instead the best performing parameter values among those that yield at least

one selected sensor in that treated area. We perform this process for each of the builds described in

Section 2. So for builds that do not use PurpleAir sensors, the initial selection step just requires a

single EPA sensor in that geography with enough non-missing data.
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Table 1: Sensors used for demonstration build

TreatmentArea AirNow EPA PurpleAir NYC_Perm Mean PM2.5
CBD 0 0 15 2 6.21
Staten Island 1 0 0 0 7.83
Queens 2 1 4 1 7.97
Manhattan Above CBD 2 0 11 1 5.08
Brooklyn 1 0 23 0 6.24
New Jersey 6 0 0 0 8.90
The Bronx 3 1 9 1 9.23

Notes: Each row shows a different treated area. The middle four columns show how many sensors from the specified source
are used in that treated area. For example, there are 15 PurpleAir sensors in the CBD and 23 in Brooklyn in this particular
build.

5 Example of the sensor layout in demonstration build

Table 1 shows the attributes of a build which uses a mix of data from PurpleAir, the EPA, and New

York City. This was performed for the purposes of demonstration and the power analysis below. It

includes data from June 2022 to November 2024.

The table shows that there are few government sensors available in the CBD. There are many more

PurpleAir sensors, though none in Staten Island.9 Only one AirNow sensor was available in Brooklyn

given the date range and inclusion criteria for missing values.

6 Visual assessment

In Figure 2, we show the results of a placebo exercise using the demonstration build. The red dashed

line shows the daily counterfactual PM2.5 for the Manhattan CBD as determined by the synthetic

control, while the blue solid line shows actual daily PM2.5 in the Manhattan CBD. Data prior to the

placebo treatment date of April 1, 2024 are used to choose the synthetic control weights. The two series

track each other closely, including during the large spike in pollution from the Canadian wildfires

in June 2023 (leftmost side of the plot). Overall, this suggests that the design is well-positioned to

measure the effects of congestion pricing. Below, we examine power more systematically.

9Our 2024 pull of the PurpleAir data did not include sensors in New Jersey, so the table shows zero PurpleAir sensors
there. Our eventual data pull will include New Jersey sensors.
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Figure 2: Example of the augsynth fit with the Manhattan CBD as treated area
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Notes: This shows an example of fitting a synthetic control on the daily average PM2.5 data, with the Manhattan CBD as
the treated area. We use a placebo treated date of April 1, 2024 (shown in the vertical line).
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7 Power analysis

We probed the power by estimating effects for several placebo dates in the data and several estimation

methods. Table 2 shows the results. We consider three ways of forming the counterfactual: The simple

average of all non-treated observations (described as method “none” in the table), the multisynth es-

timator of Ben-Michael et al. (2021b), and the GSynth estimator of Xu (2017). We switch to agusynth

with ridge augmentation whenever we have only one sensor, which for the demonstration build was

true only for Staten Island.

We show estimates of the distribution of placebo treatment effects in each of seven geographic

areas. For each area, we sort by the width of the distribution of average ATTs from smallest to largest.

The first panel of the table shows our analysis of effects in the CBD, the main treated area. Focusing

on the multisynth estimates in the first row, we estimate that we should be able to detect about a 0.26

point or 4.6% change in PM2.5 pollution. The GSynth estimates are less precise.

This detectable effect is smaller than the changes predicted in Manhattan. Our main reference

for the expected effects is Metropolitan Transportation Authority (2023). The report projects an 11%

drop in PM2.5 pollution in the Manhattan CBD. Our analysis should be able to detect an effect of this

magnitude.

Subsequent panels show the power analyses for spillover effects on other areas. In each, the mul-

tisynth estimates are much more precise than the GSynth estimates; in several, they are also more

precise than the unweighted estimates. But detectable effects are larger than those predicted in Brook-

lyn, Queens, the Bronx, and the treated parts of New Jersey. For example, Metropolitan Transportation

Authority (2023) predicts a 2% increase in Staten Island (see Figure 10-8). We will have trouble detect-

ing effects of this magnitude.

These power calculations should be taken as only a rough guide because the projections were

made assuming a $15 toll (it was subsequently decreased to $9) and because the modeling exercise

is inherently uncertain. Taken literally, however, we should be powered to detect the expected de-

creases within the congestion zone. We are not powered to detect the expected increases outside of

the congestion zone, as these changes are much smaller. However, given the policy interest in nega-

tive spillovers from congestion pricing (e.g. Howard, 2024), our results may help to rule out especially

large effects.
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Table 2: Placebo runs for confidence intervals

Treatment Method Outcome CI width over 2 Treated mean N dates
CBD multisynth PM2.5 0.263 5.716 64
CBD none PM2.5 0.368 5.716 64
CBD GSYN PM2.5 1.097 5.716 64
Brooklyn multisynth PM2.5 0.105 6.236 64
Brooklyn none PM2.5 0.140 6.236 64
Brooklyn GSYN PM2.5 0.442 6.236 64
Manhattan Above CBD multisynth PM2.5 0.660 7.558 64
Manhattan Above CBD none PM2.5 0.863 7.558 64
Manhattan Above CBD GSYN PM2.5 1.357 7.558 64
New Jersey multisynth PM2.5 0.364 8.676 64
New Jersey none PM2.5 0.430 8.676 64
New Jersey GSYN PM2.5 0.699 8.676 64
Queens none PM2.5 0.200 8.816 64
Queens multisynth PM2.5 0.295 8.816 64
Queens GSYN PM2.5 0.846 8.816 64
Staten Island Ridge PM2.5 0.528 7.036 64
Staten Island none PM2.5 0.598 7.036 64
Staten Island GSYN PM2.5 1.836 7.036 64
The Bronx multisynth PM2.5 0.188 8.145 64
The Bronx none PM2.5 0.312 8.145 64
The Bronx GSYN PM2.5 0.625 8.145 64

Notes: This table shows the confidence intervals from several placebo runs in order to probe the power of our design. Each
row describes a set of placebo runs where we vary the date that the treated area is “treated” within that build’s date range,
leaving periods at the beginning and end for fitting the weights and estimating an effect. From each placebo treatment date,
we calculate the average ATT using the first year of post-treatment ATT estimates. The confidence interval is based on this
distribution of average ATTs. Across rows, we change the synthetic control method that we use. Staten Island does not have
a multisynth run because it has only one sensor.
The columns are as follows:
Treatment: The area for which effects will be estimated, more details above.
Method: the synthetic control technique used. Multisynth is the R multisynth package with defaults, “GSYN” uses the
gsynth package with defaults (Xu, 2017), Ridge is augsynth with Ridge, “none” is vanilla synthetic control (estimated in
augsynth).
Outcome: PM2.5, with interpolation as discussed above.
CI width over 2: half of the 95% confidence interval width based on the distribution of average one-year ATTs.
Treated mean: the mean of the outcome in the treated group.
N dates: the number of placebo treatment dates used to estimate the distribution of treatment effects.
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Table 3: Pre-analysis checklist: Pollution outcomes

Item Brief Description Followed plan?
1 Sample and Data Daily average PM2.5 from PurpleAir sensors,

NYC permanent sensors, and EPA sensors.
Weather data from GHCNd. Data start deter-
mined by the power analysis above (Section 4).

2 Primary Outcomes Average daily PM2.5.
3 Treatment definition Treatment begins January 5, 2025, when NYC

implements congestion pricing. We estimate ef-
fects separately for seven treated areas: Man-
hattan CBD, the Bronx, New Jersey, Queens,
Staten Island, Brooklyn, and Manhattan north
of CBD (Section 3).

4 Causal design / controls We estimate effects using augsynth or
multisynth (when the treated areas have
multiple sensors) with defaults. Counterfactual
PM2.5 is constructed from sensors in North-
eastern US excluding other treated areas and a
20-mile doughnut around the CBD.

5 Primary estimates Average treatment effects on daily PM2.5 over
the first three months and first year of the
policy. Effects estimated separately for each
treated area.

6 Missing data and cleaning Drop sensors missing some percent of obser-
vations in either the post-treatment period or
pre-treatment period, with missingness thresh-
old determined as outlined in Section 4. Linear
regression to interpolate missing weather and
pollution data.

7 Inference Wild bootstrap when using multisynth, con-
formal inference when using augsynth.

8 Secondary analyses i.) Estimate effects using only daily average
pollution during peak hours (i.e., times when
congestion pricing is in effect). ii.) Estimate ef-
fects on daily average NO2 and CO using na-
tionwide data from EPA sensors.

9 Robustness checks i.) Estimate PM2.5 effects without using Pur-
pleAir sensors in the treated areas.

10 Contingencies If policy canceled before one of the end points,
estimand shifts to average change during im-
plementation period.

Notes: This table gives a brief checklist of analysis steps for pollution outcomes, with references to the full explanation of the
decisions. When our analysis is complete, we will fill in the “Followed plan?” column with either “Yes” or an explanation.
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